Roll No.

Total No. of Pages: 03

Total No. of Questions: 09

MCA (2012 & Onwards) (Sem.-3)
COMPUTER BASED OPTIMIZATION TECHNIQUES

Subject Code: MCA-302 Paper ID: [B1158]

Time: 3 Hrs. Max. Marks: 100

INSTRUCTION TO CANDIDATES:

- 1. SECTIONS-A, B, C & D contains TWO questions each carrying TWENTY marks each and students has to attempt any ONE question from each SECTION.
- 2. SECTION-E is COMPULSORY consisting of TEN questions carrying TWENTY marks in all.
- 3. Use of non-programmable scientific calculator is allowed.

SECTION-A

1) Consider the following linear program (LP):

$$Minimize Z = 3x_1 + 2x_2$$

Subject to

$$x_1 + 2x_2 \le 12$$

$$2x_1 + 3x_2 = 12$$

$$2x_1 + x_2 \ge 8$$

and
$$x_1 \ge 0$$
, $x_2 \ge 0$

- a) Plot the feasible region
- b) Determine all corner point feasible (CPF) solutions.
- c) Determine all basic feasible (BF) solutions.
- d) Determine all optimal solutions.
- e) If Constraint (1) changed from $x_1 + 2x_2 \le 12$ to $x_1 + 2x_2 \ge 12$, what is the optimal solution? $(5\times 4=20)$
- 2) Find the dual of the following primal linear programming problem and solve the primal from the solution of the dual problem:

Minimize
$$Z = 3x_1 + 2x_2 + x_4$$

Subject to

$$2x_1 + x_2 + x_3 + 2x_4 \ge 7$$

$$x_2 + 3x_4 = 5$$

$$x_1, x_2 \ge 0, \quad x_3 \le 0, x_4 \text{ unrestricted.}$$

(20)

SECTION-B

3) Consider the transportation problem having the following parameter table :

	Destination			
	1	2	3	Supply
Source 1	13	16	15	18
Source 2	18	15	16	14
Demand	10	5	10	

- a) Use the Northwest corner rule to obtain an initial basic feasible solution and objective function value. (10)
- b) Use the transportation simplex method to find an optimal solution. Identify the optimal solution and the objective function value. (10)
- 4) Consider the problem of assigning four operators to four machines. The assignment costs in Rupees are given below. Operator 1 cannot be assigned to machine 3 and operator 3 cannot be assigned to machine 4. Find the optimal assignment using the 'Hungarian Assignment Method'.

		Machine				
		1,22	pape 2	_m 3	4	
Operator	1	5	5	-	2	
	2	7	4	2	3	
	3	9	3	5	-	
	4	7	2	6	7	

(20)

SECTION-C

- 5) What is dynamic programming? Differentiate between deterministic and probabilistic dynamic programming. Give applications of dynamic programming? (20)
- 6) a) Let A and B be events defined on some sample space, with P(A) = 1/3, P(B) = 1/4, and $P(A \cap B) = 1/6$. Find the probability that exactly one of the events A, B occur. (10)
 - b) Among 35 students in a class, 17 earned "A" on the midterm, 14 earned "A" on final exam, and 11 did not earn "A" on either exam. What is the probability that a randomly selected student from this class earned "A" on both exams? (10)

SECTION-D

7) Solve the following LPP by the Gomory algorithm:

Maximize $Z = 20x_1 + 22x_2 + 18x_3$

Subject to the constraints

$$4x_1 + 6x_2 + x_3 \ge 54$$

$$4x_1 + 4x_2 + 6x_3 \ge 65$$

 x_1 , x_2 , $x_3 \ge 0$, each ≤ 7 and integers.

8) Solve the following integer LPP using branch-and-bound algorithm:

Maximize $Z = 2x_1 + 10x_2 + x_3$

Subject to constraints:

$$5x_1 + 2x_2 + x_3 \le 15$$

$$2x_1 + x_2 + 7x_3 < 20$$

$$x_1 + 3x_2 + 2x_3 < 25$$

 $x_1, x_2, x_3 \ge 0$, and integers.

SECTION-E

- 9) Write briefly:
 - a) Explain the main characteristic features of Operations Research.
 - b) Name various OR models.
 - c) What is linear programming? What are its major assumptions?
 - d) What is meant by degeneracy in a linear programming problem?
 - e) Explain how the assignment problem can be treated as a particular case of transportation problem.
 - f) Explain the Role of Sensitivity Analysis in decision making.
 - g) Discuss the economic interpretation of Dual Variables.
 - h) What is unbalanced transportation problem? Explain.
 - i) What is decision theory?
 - j) Give definition of probability.